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Using MAXQ's Multiplier Module

 
A MAXQ-based microcontroller can be equipped with a 16x16 hardware multiplier peripheral 
module. This application note describes how the multiplier operates and how to write code for this 
module in applications to maximize math performance.

 

Introduction
The hardware multiplier (hereafter a Multiply-Accumulate, or MAC) module is a very powerful tool, especially for 
applications that require heavy calculations, e.g., firmware for an electricity-metering microcontroller. This multiplier is 
capable of executing the multiply or multiply-negate or multiply-accumulate or multiply-subtract operation for signed or 
unsigned operands in a single machine cycle, and even faster for special cases. This article examines the hardware 
organization and functionality, explains how to write code for MAC and provides simple examples of typical calculations 
using MAXQ's hardware multiplier.

Getting Started
To begin, we need basic knowledge about the MAXQ architecture, register map and instruction set, which information can 
be obtained from the MAXQ Family User's Guide or from any MAXQ-based microcontroller data sheet, e.g., MAXQ2000. 
We also need reference to the MAC hardware description, which is in the MAXQ Family User's Guide document. Certain 
familiarity with assembly language in general, and with MAXQ assembler in particular, is assumed.

Multiplier Overview
From the programming point of view, the MAC module appears as 8 special function registers, mapped in modules' space 
from M0 through M5. One register (MCNT) contains control bits, two registers (MA, MB) designated for input operands, 
three registers (MC0, MC1, MC2 considered as one long MC register) keep the output result, i.e. either product or 
accumulation, and two read-only registers (MC0R,MC1R considered as one MCR register, "R" stands for "read-only") are 
used in special cases as output registers. The accumulator MC is configurable, typically 40- or 48-bits wide. In any 
configuration, there are two 16-bit registers MC0 and MC1, whereas the MC2 register is implemented as 8-bit, 16-bit or 
other. For the sake of simplicity let us assume that the accumulator MC is 48-bits wide and MAC registers are mapped in 
module M3: 

#define MCNT    M3[0]
#define MA      M3[1]
#define MB      M3[2]
#define MC2     M3[3]
#define MC1     M3[4]
#define MC0     M3[5]
#define MC1R    M3[6]
#define MC0R    M3[7]

The multiplier is always ready to do math, usage is very simple and consists of four basic steps: 1) set configuration, 2) 
load operands, 3) wait, and 4) unload result. Figure 1 represents MAC registers and typical operation flow. Actual 
calculations start immediately after step 2. When an operation is started, the multiplier calculates the product of operands 
MA and MB whose product is then either placed or added to the accumulator MC by the end of step 3. The MCR register 
participates as internal working memory and we normally do not care for it. The way that the register works is rather tricky 
and confusing at first sight. It is advisable for beginners to ignore the MCR register, with exception for special case 
MCW=1. Advanced user can enjoy the benefits of shorter and faster code by sneaking intermediate data from the MCR 
register, but such user must fully understand the way it works.
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Figure 1. Hardware multiplier registers structure and typical operation flow.

The set configuration step (step 1) implies a simple write to the control register MCNT. Besides updating the data it also 
implicitly initializes the hardware, i.e., prepares MAC to accept new operands and perform new operation. This step can 
be skipped if desired configuration is already set in the MCNT register. When an operation is started, the multiplier always 
uses the current content of MCNT.

Actual calculations start as soon as the necessary operands are loaded into the MAC (step 2). There are no limitations on 
how quickly data is entered into operand registers or on the order of data entry. The invisible operand count register keeps 
track of all writes to MA and MB and triggers a calculation accordingly. For example, in two-operand modes, the first 
loaded operand can then be re-loaded many times without starting a calculation. The calculations are started only when 
the second operand is loaded. In one-operand modes, the calculations are triggered when the first operand is loaded to 
the MA or MB register. The operand count gets initialized by hardware when a calculation is started or when the MCNT 
register is written.

The wait state (step 3) is needed when the result of operation is expected from the MC register. Think of it as a two-phase 
process: 1) execute an operation, e.g. calculate the product MA*MB, and 2) update accumulator MC. The first phase is 
done right away, but second phase is equivalent to "move" instruction. It takes one machine cycle of time for MAC 
hardware to execute this move. However, the wait state can be skipped in special case MCW=1 when the result is 
expected from MCR register, because the output of the first phase is stored there. One can put any meaningful instruction 
instead of "no operation" during the wait state, except a write into MCNT, which will disrupt current multiplier operation. 

Multiplier Configuration Options
The meaning of the control bits in the MCNT register is straightforward. 

●     bit 0: SUS treat operands MA, MB as unsigned 16-bit numbers when SUS=1; treat operands MA, MB as signed 16-
bit numbers when SUS=0; 

●     bit 1: MMAC add product to accumulator MC when MMAC=1; place product into accumulator MC when MMAC=0; 
●     bit 2: MSUB use (-MA) value instead of MA when MSUB=1; use MA operand as is when MSUB=0; 
●     bit 3: OPSC loading one operand will trigger calculations when OPSC=1; loading two operands will trigger 

calculations when OPSC=0; 
●     bit 4: SQU loading one operand will copy the loaded value into the other operand register and trigger calculations 

when SQU=1 (square mode); square mode is disabled when SQU=0; 
●     bit 5: CLD all data registers (MA,MB,MC, operand count) are cleared to 0 when CLD=1. This bit is automatically 

cleared by hardware. 



●     bit 6: MCW prevent multiplier from writing result to accumulator MC when MCW=1. multiplier will write the result 
into accumulator MC when MCW=0; 

●     bit 7: OF read-only bit, signifies that errors (like overflow) occurred when OF=1; no errors if OF=0; 

The operand select bit OPSC turns on the one-operand mode. The multiplier will start calculation after loading the first 
operand when OPSC=1. The SQU bit switches the square mode, in which the first loaded operand is automatically copied 
to the other operand register and the operation is triggered. The OPSC bit has no meaning when SQU=1.

The MCW bit is a write-protect flag for the accumulator MC. Setting MCW=1 allows performing a multiplication without 
disturbing the MC register. In this special case the result of operation (to be precise, the least 32 bits of the result) can be 
obtained without wait state delay from the MCR register. Note that the write-protection feature only affects the multiplier 
operations. User still can write directly to the MC register when MCW=1, but MAC cannot update it. That provides a 
possibility of unconventional use of the MAC as an additional storage. Five 16-bit registers MA, MB, MC0, MC1, MC2 can 
temporarily store data, pointers, counters, etc, which is especially useful for the 8-bit MAXQ10 core. By setting MCW=1 we 
ensure that the accumulator MC will not be accidentally updated when we write to MA or MB.

The multiplier sets read-only status bit OF when critical error happens during operation: 

●     overflow or underflow of MC register for unsigned operation; 
●     overflow or underflow of MC register for signed operation; 
●     attempt to execute unsigned multiply-negate operation. 

In all other cases the OF bit is cleared by hardware after operation. There is no OF bit set for multiply-only and signed 
multiply-negate operation, the bit is cleared. Note that in case of overflow/underflow event the MC register contains the 
correct low bits of the result.

As mentioned above, any write to MCNT also implicitly initializes the operand count register and prepares MAC to start 
new operation. More details about the control bits can be found below in the code examples section.

Multiplier Data Flow
The function of accumulator MC and the read-only register MCR can be presented by the following equations:

where n is the execution cycle, MMAC is accumulation flag (0 or 1), MSUB is negation flag (0 or 1) in the MCNT register. 
The MCR register keeps only 32 low bits of the right-hand side of the equation (2), but it gets updated immediately at 
execution cycle n. The MC register keeps a full length of the result, extended with OF bit if necessary, but both MC and 
OF get updated 1 cycle later. The data flow in the multiplier during operation is shown on the Figure 2.

Figure 2. Multiplier operation data flow.



Code Examples
It is convenient to denote the control bits with corresponding names, 

#define SUS   0x01
#define MMAC  0x02
#define MSUB  0x04
#define OPSC  0x08
#define SQU   0x10
#define CLD   0x20
#define MCW   0x40
#define OF    0x80

and use those names instead of numbers. For example, the instruction 'move MCNT, #(SUS+MMAC+MSUB+SQU)' is a 
mnemonic for 'move M3[0], #23'. Programming the multiplier requires the data movement to and from the MAC, so the 
most used instruction is 'move dest,src'. Every example in this section is accompanied with a table showing resulting 
changes in the multiplier registers after execution of each instruction. A bold entry denotes that a register was updated, 
even if the value is not changed. All numbers are hexadecimal in tables, the 'xxxx' entry denotes the value of no 
importance. Note the behaviour of the MCR register: it gets updated every time the content of MA, or MB, or MC is 
changed. Examples 1-7 illustrate simple use of the MAC for a single operation, examples 8-12 show more complex 
configurations, e.g. how to avoid the wait state for continuous calculations. Example 13 demonstrates how the multiplier 
can speed up a square root calculation.

1.  Unsigned Multiplication.
Calculate the product 3*5 and place it to the register A[0]. 

move    MCNT, #(SUS+CLD)        ; unsigned, multiply-only, clear data
move    MA, #3  ; load first operand into MA
move    MB, #5  ; load second operand into MB
                                ; the product is in MCR register
nop                     ; wait for MAC to update MC
move    A[0],MC0        ; unload the product

The A[0] register contains the product 3*5 = 15 (0x000F). 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(SUS+CLD) 01 0000 0000 0000 0000 0000 0000 0000

move MA, #3 01 0003 0000 0000 0000 0000 0000 0000

move MB, #5 01 0003 0005 0000 0000 0000 0000 000F

nop 01 0003 0005 0000 0000 000F 0000 000F

move A[0],MC0 01 0003 0005 0000 0000 000F 0000 000F

Advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 'nop').

2.  Signed Multiplication.
Calculate the product 3*(-5) and place it to the register A[0]. 

move    MCNT, #(CLD); signed, multiply-only, clear data registers
move    MA, #3  ; load first operand into MA
move    MB, #(-5)       ; load second operand into MB
                                ; the product is in MCR register
nop                     ; wait for MAC to update MC
move    A[0],MC0        ; unload the product

The A[0] register contains the product 3*(-5) = -15 (0xFFF1). 



INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(CLD) 00 0000 0000 0000 0000 0000 0000 0000

move MA, #3 00 0003 0000 0000 0000 0000 0000 0000

move MB, #(-5) 00 0003 FFFB 0000 0000 0000 FFFF FFF1

nop 00 0003 FFFB FFFF FFFF FFF1 FFFF FFF1

move A[0],MC0 00 0003 FFFB FFFF FFFF FFF1 FFFF FFF1

Advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 'nop').

3.  Signed Multiply-Negate operation.
Calculate the negative product of 3 and (-5), place it to the register A[0]. 

move    MCNT, #(MSUB+CLD)       ; signed, multiply-negate, clear data registers
move    MA, #3  ; load first operand into MA
move    MB, #(-5)       ; load second operand into MB
                                ; the result is in MCR register
nop                     ; wait for MAC to update MC
move    A[0],MC0        ; unload the result

The A[0] register contains the result -(3*(-5)) = 15 (0x000F). 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(MSUB+CLD) 04 0000 0000 0000 0000 0000 0000 0000

move MA, #3 04 0003 0000 0000 0000 0000 0000 0000

move MB, #(-5) 04 0003 FFFB 0000 0000 0000 0000 000F

nop 04 0003 FFFB 0000 0000 000F 0000 000F

move A[0],MC0 04 0003 FFFB 0000 0000 000F 0000 000F

Advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 'nop').

4.  Unsigned Multiply-Accumulate operation.
Calculate the expression 2+3*5 and place it to the register A[0]. 

move    MCNT, #(SUS+MMAC)       ; unsigned, multiply-accumulate
                        ; no CLD set, data registers hold their content
move    MC0, #2 ; pre-load accumulator
move    MC1, #0 ; pre-load accumulator
move    MC2, #0 ; pre-load accumulator
move    MA, #3  ; load first operand into MA
move    MB, #5  ; load second operand into MB
                                ; the result is in MCR register!
nop                     ; wait for MAC to update MC
                                ; the MCR was changed to MC+MA*MB!
move    A[0],MC0        ; unload the result

The A[0] register contains the result 2+3*5 = 17 (0x0011). 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(SUS+MMAC) 03 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

move MC0, #2 03 xxxx xxxx xxxx xxxx 0002 xxxx xxxx

move MC1, #0 03 xxxx xxxx xxxx 0000 0002 xxxx xxxx

move MC2, #0 03 xxxx xxxx 0000 0000 0002 xxxx xxxx



move MA, #3 03 0003 xxxx 0000 0000 0002 xxxx xxxx

move MB, #5 03 0003 0005 0000 0000 0002 0000 0011

nop 03 0003 0005 0000 0000 0011 0000 0020

move A[0],MC0 03 0003 0005 0000 0000 0011 0000 0020

Note the behavior of the MCR register. It follows the equation (2) above, i.e. always reflects the current state of MA, 
MB, and MC. In this example, the MCR register holds 32 bits of the result only 1 machine cycle during wait state, 
then changes its value because the MC register gets updated after the wait state, the new value is MCR = 0x0020 
= 32 = 17+3*5 = MC+MA*MB.

Advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 'nop'). But two things 
must be remembered: i) there are only 32 low bits of the result available from the MCR, and ii) even those 32 bits 
are available limited time, only one machine cycle in this example configuration.

5.  Signed Multiply-Accumulate operation.
Calculate the expression (-2)+3*(-5) and place it to the register A[0]. 

move    MCNT, #(MMAC)   ; signed, multiply-accumulate
move    MC0, #0FFFEh    ; pre-load accumulator
move    MC1, #0FFFFh    ; pre-load accumulator
move    MC2, MC1                ; pre-load accumulator
move    MA, #3          ; load first operand into MA
move    MB, #(-5)               ; load second operand into MB
                                ; the result is in MCR register!
nop                     ; wait for MAC to update MC
                                ; the MCR was changed to MC+MA*MB!
move    A[0],MC0        ; unload the result

The A[0] register contains the result (-2)+3*(-5) = -17 (0xFFEF). 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(MMAC) 02 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

move MC0, #0FFFEh 02 xxxx xxxx xxxx xxxx FFFE xxxx xxxx

move MC1, #0FFFFh 02 xxxx xxxx xxxx FFFF FFFE xxxx xxxx

move MC2, MC1 02 xxxx xxxx FFFF FFFF FFFE xxxx xxxx

move MA, #3 02 0003 xxxx FFFF FFFF FFFE xxxx xxxx

move MB, #(-5) 02 0003 FFFB FFFF FFFF FFFE FFFF FFEF

nop 02 0003 FFFB FFFF FFFF FFEF FFFF FFE0

move A[0],MC0 02 0003 FFFB FFFF FFFF FFEF FFFF 
FFE0

        

As in example 4 above, advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 
'nop') before this register gets updated with new value MCR = 0xFFFF FFE0 = -32 = -17+3*(-5) = MC+MA*MB.

6.  Unsigned Multiply-Subtract operation.
Calculate the expression 17-3*5 and place it to the register A[0]. Let us assume that the operands are stored in the 
registers A[1]=3 and A[2]=5. 

move    MCNT, #(SUS+MMAC+MSUB)  ; unsigned, multiply-subtract
move    MC0, #17        ; pre-load accumulator
move    MC1, #0 ; pre-load accumulator
move    MC2, #0 ; pre-load accumulator
move    MA, A[1]        ; load first operand into MA



 

move    MB, A[2]        ; load second operand into MB
                                ; the result is in MCR register!
nop                     ; wait for MAC to update MC
                                ; the MCR was changed to MC-MA*MB!
move    A[0],MC0        ; unload the result

The A[0] register contains the result 17-3*5 = 2 (0x0002). 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(SUS+MMAC+MSUB) 07 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

move MC0, #17 07 xxxx xxxx xxxx xxxx 0011 xxxx xxxx

move MC1, #0 07 xxxx xxxx xxxx 0000 0011 xxxx xxxx

move MC2, #0 07 xxxx xxxx 0000 0000 0011 xxxx xxxx

move MA, A[1] 07 0003 xxxx 0000 0000 0011 xxxx xxxx

move MB, A[2] 07 0003 0005 0000 0000 0011 0000 0002

nop 07 0003 0005 0000 0000 0002 FFFF FFF3

move A[0],MC0 07 0003 0005 0000 0000 0002 FFFF FFF3

As in example 4 above, advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 
'nop') before this register gets updated with new value MCR = 0xFFFF FFF3 = -13 = 2-3*5 = MC-MA*MB.

7.  Signed Multiply-Subtract operation.
Calculate the expression (_2)-3*(-5) and place it to the register A[0]. Let us assume that the operands are stored in 
the registers A[1]=3 and A[2]= -5. 

move    MCNT, #(MMAC+MSUB); signed, multiply-subtract
move    MC0, #0FFFEh    ; pre-load accumulator
move    MC1, #0FFFFh    ; pre-load accumulator
move    MC2, #0FFFFh    ; pre-load accumulator
move    MA, A[1]        ; load first operand into MA
move    MB, A[2]        ; load second operand into MB
                                ; the result is in MCR register!
nop                     ; wait for MAC to update MC
                                ; the MCR was changed to MC-MA*MB!
move    A[0],MC0        ; unload the result

The A[0] register contains the result (-2)-3*(-5) = 13 (0x000D). 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT,#(SUS+MMAC+MSUB) 06 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

move MC0, #0FFFEh 06 xxxx xxxx xxxx xxxx FFFE xxxx xxxx

move MC1, #0FFFFh 06 xxxx xxxx xxxx FFFF FFFE xxxx xxxx

move MC2, #0FFFFh 06 xxxx xxxx FFFF FFFF FFFE xxxx xxxx

move MA, A[1] 06 0003 xxxx FFFF FFFF FFFE xxxx xxxx

move MB, A[2] 06 0003 FFFB FFFF FFFF FFFE 0000 000D

nop 06 0003 FFFB 0000 0000 000D 0000 001C

move A[0],MC0 06 0003 FFFB 0000 0000 000D 0000 001C

As in example 4 above, advanced user may save a cycle by reading from the MCR ('move A[0],MC0R' instead of 
'nop') before this register gets updated with new value MCR = 0x001C = 28 = 13-3*(-5) = MC-MA*MB.

8.  One-operand mode.
This mode is useful when an application needs to perform an operation with the same constant many times. Since 



one of the operands is not changing, no need to load it every time. Just load the constant operand once and switch 
the multiplier to the one-operand mode. Then every write to another operand register will trigger the calculations.

For example, assume that analog-to-digital conversion hardware repeatedly returns voltage as 16-bit values in a 
register called ADC with the least significant bit scaled as 1/8 V, and a microcontroller application must re-calculate 
every voltage value to mV units and store it in data RAM. That re-calculation can be done by multiplying the row 
data by coefficient 1000/8=125 (0x7D). Following code will do the job.

; configure multiplier initially (this code is executed once)
move    MA, #125                ; load the constant factor into MA.
move    MCNT, #(OPSC)   ; signed, multiply-only, one-operand mode
......
; this code is executed repeatedly with every new ADC value
move    MB, ADC ; load operand into MB
                                ; the result is in MCR register!
move    DP[0],#8        ; set address=0x0008 while waiting for MAC to update MC
move    @DP[0], MC0     ; store the result in data memory at address 0x0008
......

The example shows, by the way, how the wait state can be used for setting an address instead of wasting time with 
nop. Let assume that three consecutive raw voltages were 5.0V, 1.5V, -2.5V (0x0028, 0x000C, 0xFFEC) then 
software flow can be represented by following table. 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MA, #125 xxxx 007D xxxx xxxx xxxx xxxx xxxx xxxx

move MCNT,#(OPSC) 08 007D xxxx xxxx xxxx xxxx xxxx xxxx

.....         

move MB, ADC 08 007D 0028 xxxx xxxx xxxx 0000 1388

move DP[0], #8 08 007D 0028 0000 0000 1388 0000 1388

move @DP[0], MC0 08 007D 0028 0000 0000 1388 0000 1388

..... Data memory[8] = 0x1388 (= 5000 mV)        

move MB, ADC 08 007D 000C xxxx xxxx xxxx 0000 05DC

move DP[0], #8 08 007D 000A 0000 0000 05DC 0000 05DC

move @DP[0], MC0 08 007D 000A 0000 0000 05DC 0000 05DC

..... Data memory[8] = 0x05DC (= 1500 mV)        

move MB, ADC 08 007D FFEC xxxx xxxx xxxx FFFF F63C

move DP[0], #8 08 007D FFEC FFFF FFFF F63C FFFF F63C

move @DP[0], MC0 08 007D FFEC FFFF FFFF F63C FFFF F63C

..... Data memory[8] = 0xF63C (= -2500 mV)        

Again, advanced user may save a cycle of the repeated code by reading from the MCR: 

; configure multiplier initially (this code is executed once)
move    DP[0],#8        ; set address=0x0008
move    MA, #125                ; load the constant factor into MA.
move    MCNT, #(OPSC)   ; signed, multiply-only, one-operand mode
......
; this code is executed repeatedly with every new ADC value
move    MB, ADC ; load operand into MB
                                ; the result is in MCR register!
move    @DP[0], MC0R; store the result in data memory at address 0x0008
......



But remember the limitations: only 32 low bits are available from the MCR, and its content is subject to change 
without notice!

9.  Square mode.
In this mode, a square can be calculated by loading only 1 operand. For example, a microcontroller application 
must calculate RMS value of the voltage. Part of that calculation is a sum of squares of the samples, which sum 
can be easily done by using MAC's square mode. Assume the voltage samples are 16-bit signed values scaled in 
mV units and stored (repeatedly) in data RAM at address 0x0008. The code might look as follows. 

; configure multiplier initially (this code is executed once)
move    DP[0],#8        ; set address=0x0008
move    MCNT,#(MMAC+SQU+CLD)    ; signed, square-accumulate, clear registers
......
; this code is executed repeatedly with every new sample
move    MA, @DP[0]      ; load operand into MA (assume DP[0] is active data ptr)
                                ; the result is in MCR register!
nop                     ; wait for MAC to update MC
                                ; the MCR was changed to MC+MA*MB!
......

The sum of squares is being accumulated in the MC register. Assume that the first three consecutive raw voltages 
were 5.0V, 1.5V, -2.5V (0x1388, 0x05DC, 0xF63C), then software flow can be represented by following table. 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move DP[0], #8 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

move MCNT,#(MMAC+SQU+CLD) 12 0000 0000 0000 0000 0000 0000 0000

.....  

move MA, @DP[0] 12 1388 1388 0000 0000 0000 017D 7840

nop 12 1388 1388 0000 017D 7840 02FA F080

..... MC = 0x017D 7840 (= 25 000 000 mV2)

move MA, @DP[0] 12 05DC 05DC 0000 017D 7840 019F CD50

nop 12 05DC 05DC 0000 019F CD50 01C2 2260

..... MC = 0x019F CD50 (= 25 000 000 + 2 250 000 mV2)

move MA, @DP[0] 12 F63C F63C 0000 019F CD50 01FF 2B60

nop 12 F63C F63C 0000 01FF 2B60 025E 8970

..... MC = 0x01FF 2B60 (= 25 000 000 + 2 250 000 + 6 250 000 mV2)

10.  Accumulator write-protect feature.
This feature (MCW control bit) allows a multiply without accumulate, i.e. the contents of the accumulator are not 
updated by multiplier's operation. It may be useful if application requires to perform two different tasks in parallel, 
one involves accumulation and another one is just to multiply numbers. Then the multiplier can be switched back 
and forth between those tasks without saving/restoring its accumulator. Say, we can combine the above examples 
8 and 9 to accumulate the sum of squares in parallel with conversion to millivolts by using MCW control bit. 

; initialize MAC (this code is executed once)
move    DP[0],#8        ; set address=0x0008
move    MCNT,#(CLD)     ; clear registers
......
; this code is executed repeatedly with every new ADC value
; multiply by constant factor but keep the MC intact
move    MCNT, #(MCW); signed, multiply-only, MCW-protect
move    MA, #125        ; load constant factor into MA



move    MB, ADC ; load raw sample into MB
                                ; the result is in MCR register!
                                ; special case MCW=1, no wait state needed here!
move    @DP[0],MC0R     ; store the result in data memory at address 0x0008
; accumulate sum of squares in MC
move    MCNT, #(MMAC+SQU)       ; signed, square-accumulate, clear MCW-protect
move    MA, MC0R        ; load operand into MA
                                ; the result is in MCR register!
nop                     ; wait for MAC to update MC
                                ; the MCR was changed to MC+MA*MB!
......

The sum of squares is being accumulated in MC register, while result of multiplication (conversion to mV) is 
accessible via MCR register. Note that no wait state is necessary for the multiplication. Let assume that the first 
three consecutive raw voltages were 5.0V, 1.5V, -2.5V (0x0028, 0x000C, 0xFFEC) then software flow can be 
represented by following table. 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move DP[0], #8 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

move MCNT,#(CLD) 00 0000 0000 0000 0000 0000 0000 0000

.....

move MCNT, #(MCW) 40 xxxx xxxx 0000 0000 0000 xxxx xxxx

move MA, #125 40 007D xxxx 0000 0000 0000 xxxx xxxx

move MB, ADC 40 007D 0028 0000 0000 0000 0000 1388

move @DP[0], MC0R 40 007D 0028 0000 0000 0000 0000 1388

move MCNT, 
#(MMAC+SQU)

12 007D 0028 0000 0000 0000 0000 1388

move MA, MC0R 12 1388 1388 0000 0000 0000 017D 7840

nop 12 1388 1388 0000 017D 7840 02FA F080

..... Data memory[8] = 0x1388 (= 5000 mV)MC = 0x017D 7840 (= 25 000 000 mV2)

move MCNT, #(MCW) 40 xxxx xxxx 0000 017D 7840 xxxx xxxx

move MA, #125 40 007D xxxx 0000 017D 7840 xxxx xxxx

move MB, ADC 40 007D 000C 0000 017D 7840 0000 05DC

move @DP[0], MC0R 40 007D 000C 0000 017D 7840 0000 05DC

move MCNT, 
#(MMAC+SQU)

12 007D 000C 0000 017D 7840 0000 05DC

move MA, MC0R 12 05DC 05DC 0000 017D 7840 019F CD50

nop 12 05DC 05DC 0000 019F CD50 01C2 2260

.....
Data memory[8] = 0x05DC (= 1500 mV)MC = 0x019F CD50 (= 25 000 000 + 2 250 
000 mV2)

move MCNT, #(MCW) 40 xxxx xxxx 0000 019F CD50 xxxx xxxx

move MA, #125 40 007D xxxx 0000 019F CD50 xxxx xxxx

move MB, ADC 40 007D FFEC 0000 019F CD50 FFFF F63C

move @DP[0], MC0R 40 007D FFEC 0000 019F CD50 FFFF F63C

move MCNT, 
#(MMAC+SQU)

12 007D FFEC 0000 019F CD50 FFFF F63C

move MA, MC0R 12 F63C F63C 0000 019F CD50 01FF 2B60

nop 12 05DC 05DC 0000 01FF 2B60 025E 8970



.....
Data memory[8] = 0xF63C (= -2500 mV)MC = 0x01FF 2B60 (= 25 000 000 + 2 250 
000 + 6 250 000 mV2)

11.  Continuous (back-to-back) calculations.
The wait state can be used for loading an operand for the next operation without disrupting current operation. For 
example, if the sum S=1*2+3*4+5*6+7*8+9*10 is to be calculated, that could be done by the following code. 

move    MCNT,#(MMAC+CLD)        ; signed, multiply-accumulate, clear registers
move    MA, #1  ; load operand MA
move    MB, #2  ; load operand MB, trigger 1*2
move    MA, #3  ; load operand MA while waiting for MAC to complete 1*2
move    MB, #4  ; load operand MB, trigger 3*4
move    MA, #5  ; load operand MA while waiting for MAC to complete 3*4
move    MB, #6  ; load operand MB, trigger 5*6
move    MA, #7  ; load operand MA while waiting for MAC to complete 5*6
move    MB, #8  ; load operand MB, trigger 7*8
move    MA, #9  ; load operand MA while waiting for MAC to complete 7*8
move    MB, #10 ; load operand MB, trigger 9*10
nop                     ; wait for MAC to update MC

The sum S=190 (0xBE) is in MC register. Note that all wait states except last one were not wasted but used for 
loading operands in this example. 

INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT, #(MMAC+CLD) 02 0000 0000 0000 0000 0000 0000 0000

move MA, #1 02 0001 0000 0000 0000 0000 0000 0000

move MB, #2 02 0001 0002 0000 0000 0000 0000 0002

move MA, #3 02 0003 0002 0000 0000 0002 0000 0008

move MB, #4 02 0003 0004 0000 0000 0002 0000 000E

move MA, #5 02 0005 0004 0000 0000 000E 0000 0022

move MB, #6 02 0005 0006 0000 0000 000E 0000 002C

move MA, #7 02 0007 0006 0000 0000 002C 0000 0056

move MB, #8 02 0007 0008 0000 0000 002C 0000 0064

move MA, #9 02 0009 0008 0000 0000 0064 0000 00AC

move MB, #10 02 0009 000A 0000 0000 0064 0000 00BE

nop 02 0009 000A 0000 0000 00BE 0000 0118

Similar technique can be utilized in one-operand or square mode. For example, if the sum 
S=12+22+32+42+52+62+72 is to be calculated, it can be done with following code. 

move    MCNT,#(MMAC+SQU+CLD)    ; signed, square-accumulate, clear registers
move    MA, #1  ; load operand into MA, trigger 1*1
move    MA, #2  ; load operand into MA, trigger 2*2 while waiting
move    MA, #3  ; load operand into MA, trigger 3*3 while waiting
move    MA, #4  ; load operand into MA, trigger 4*4 while waiting
move    MA, #5  ; load operand into MA, trigger 5*5 while waiting
move    MA, #6  ; load operand into MA, trigger 6*6 while waiting
move    MA, #7  ; load operand into MA, trigger 7*7 while waiting
nop                     ; wait for MAC to update MC

The sum S=140 (0x8C) is in MC register. Note that all wait states except last one were not wasted but used for 
loading operands. 



INSTRUCTION MCNT MA MB MC2 MC1 MC0 MC1R MC0R

move MCNT, #(MMAC+SQU+CLD) 12 0000 0000 0000 0000 0000 0000 0000

move MA, #1 12 0001 0001 0000 0000 0000 0000 0001

move MA, #2 12 0002 0002 0000 0000 0001 0000 0005

move MA, #3 12 0003 0003 0000 0000 0005 0000 000E

move MA, #4 12 0004 0004 0000 0000 000E 0000 001E

move MA, #5 12 0005 0005 0000 0000 001E 0000 0037

move MA, #6 12 0006 0006 0000 0000 0037 0000 005B

move MA, #7 12 0007 0007 0000 0000 005B 0000 008C

nop 12 0007 0007 0000 0000 008C 0000 00BD

12.  Overflow.
In case of overflow/underflow event the MC register contains the correct low bits of the result, so the OF flag can be 
used as multiplier's carry/borrow bit to implement an accumulator which is longer than MC. For example, a 64-bit 
accumulator could consist of 16-bit register A[0] and 48-bit MC register. Then 64-bit multiply-accumulate operation 
could be done by following code. 

move    MCNT, #(SUS+MMAC)       ; unsigned, multiply-accumulate
move    MA, #32768      ; load operand into MA
move    MB, #16384      ; load operand into MB
nop                     ; wait for MAC to update MC
                                ; the OF flag is set (if necessary)
move    C, MCNT.7       ; copy OF bit into Carry
addc    #0              ; A[0]+=0+Carry (assume A[0] is active MAXQ's accumulator)

The improvised 64-bit accumulator is incremented by 32768*16384. Let assume the initial value was 0x1234 FFFF 
F000 4321, then software flow is represented by the following table, new value is 0x1235 0000 1000 4321 = old 
value + 0x2000 0000. 

INSTRUCTION MCNT MA MB CARRY A[0] MC2 MC1 MC0

move MCNT,#(SUS+MMAC) 03 xxxx xxxx xxxx 1234 FFFF 4321

move MA, #32768 03 8000 xxxx xxxx 1234 FFFF F000 4321

move MB, #16384 03 8000 4000 xxxx 1234 FFFF F000 4321

nop 83 8000 4000 xxxx 1234 0000 1000 4321

move C, MCNT.7 83 8000 4000 1 1234 0000 1000 4321

addc #0 83 8000 4000 0 1235 0000 1000 4321

13.  Square root subroutine.
The MAC module can help to speed up with various math calculations, not only multiplication and accumulation. 
For example, examine a subroutine which calculates the square root of an unsigned 32-bit number A. This 
subroutine finds the result, an unsigned 16-bit number X such that X2<A<(X+1)2, by the hit-or-miss method. 
Starting with X0=0x0000 it consecutively switches each bit of the partial result Xn from 0 to 1, starting with the most 

significant bit. If Xn
2<A it keeps 1 in the bit position (hit), otherwise adopts 0 for the bit (miss). The efficiency of this 

method comes from the fact that multiplier can calculate (A-Xn
2) in a few cycles. The whole process is complete in 

n=16 iterations and requires about 200 machine cycles. It is easy to see that without MAC module the calculation of 
a square root would take much longer for the MAXQ20 processor. 

;========================================
;   SQRT32MAC subroutine for MAXQ20



;========================================
;   input:  A[3:2]  = operand, unsigned 32-bit
;   output: A[0]    = sqrt(operand), unsigned 16-bit
;   used (modified) resources:  AP,APC,A[1:0],MAC registers
;========================================
sqrt32mac_MAXQ20:
; local data map:
;       A[0] = X
;       A[1] = iteration mask
move  A[0],#0           ; init X=0x0000
move  A[1],#08000h      ; init mask=0x8000
move  MCNT,#(SUS+MMAC+MSUB+SQU) ; unsigned, square-subtract
sqrt32mac_MAXQ20_loop:
; start an iteration
move  APC,#080h; set Acc to A[0], no auto-inc
or    A[1]      ; X |= mask (set bit to try)
; get MC = AA-X^2
move  MC2,#0    ; pre-load MC with A[3:2]
move  MC1,A[3]
move  MC0,A[2]
move  MA,A[0]   ; load operand MA <- X
nop             ; wait for MAC to update MC
; now MC=AA-X^2
; check if (AA-X^2) >< 0?
move  C,MC2.0   ; Carry ><- sign(AA-X^2)
jump NC,sqrt32mac_MAXQ20_update_mask    ; jump if No Carry (hit)
; undo mask bit (miss)
xor   A[1]      ; X ^= mask (clear tried bit)
sqrt32mac_MAXQ20_update_mask:
move  AP,#01    ; set Acc to A[1]
sr                      ; A[1] >>= 1 (shift mask right, LSb -> Carry)
sjump NC,sqrt32mac_MAXQ20_loop  ; next iteration if No Carry
; all 16 bits done, exit
ret     ; return
;   End SQRT32MAC subroutine for MAXQ20
;========================================

The table below demonstrates few last iterations for A=0x00AA 63CB. The number comes from the above example 
9 and represents the voltage mean square value (=0x01FF 2B60/3). The square root from this number is the RMS 
voltage in mV units. The star symbol (*) denotes the active MAXQ's accumulator, A[0] or A[1]. The result 
X=0x0D0D (=3341 mV) is in A[0] register in the end. 

INSTRUCTION A[0] (X) A[1] (MASK) MCNT MA MB MC2 MC1 MC0

.......         

; iteration 14:         

move APC, #080h *0D08 0004 17 0D08 0D08 0000 0000 938B

Or A[1] *0D0C 0004 17 0D08 0D08 0000 0000 938B

move MC2, #0 *0D0C 0004 17 0D08 0D08 0000 0000 938B

move MC1, A[3] *0D0C 0004 17 0D08 0D08 0000 00AA 938B

move MC0, A[2] *0D0C 0004 17 0D08 0D08 0000 0000 63CB

move MA, A[0] *0D0C 0004 17 0D0C 0D0C 0000 0000 63CB

nop *0D0C 0004 17 0D0C 0D0C 0000 0000 2B3B

move C,MC2.0 Carry = 0

sjump NC,<...> Jump (hit)



move AP,#01 0D0C *0004 17 0D0C 0D0C 0000 0000 2B3B

Sr 0D0C *0002 Carry = 0

jump NC,<...> Jump to next iteration

; iteration 15:         

move APC, #080h *0D0C 0002 17 0D0C 0D0C 0000 0000 2B3B

Or A[1] *0D0E 0002 17 0D0C 0D0C 0000 0000 2B3B

move MC2, #0 *0D0E 0002 17 0D0C 0D0C 0000 0000 2B3B

move MC1, A[3] *0D0E 0002 17 0D0C 0D0C 0000 00AA 2B3B

move MC0, A[2] *0D0E 0002 17 0D0C 0D0C 0000 0000 63CB

move MA, A[0] *0D0E 0002 17 0D0E 0D0E 0000 0000 63CB

nop *0D0E 0002 17 0D0E 0D0E FFFF FFFF F707

move C,MC2.0 Carry = 1

jump NC,<...> No Jump (miss)

xOr A[1] *0D0C 0002 17 0D0E 0D0E FFFF FFFF F707

move AP,#01 0D0C *0002 17 0D0E 0D0E FFFF FFFF F707

sr 0D0C *0001 Carry = 0

sjump NC,<...> Jump to next iteration

; iteration 16:         

move APC, #080h *0D0C 0001 17 0D0E 0D0E FFFF FFFF F707

Or A[1] *0D0D 0001 17 0D0E 0D0E FFFF FFFF F707

move MC2, #0 *0D0D 0001 17 0D0E 0D0E 0000 FFFF F707

move MC1, A[3] *0D0D 0001 17 0D0E 0D0E 0000 00AA F707

move MC0, A[2] *0D0D 0001 17 0D0E 0D0E 0000 0000 63CB

move MA, A[0] *0D0D 0001 17 0D0D 0D0D 0000 0000 63CB

nop *0D0D 0001 17 0D0D 0D0D 0000 0000 1122

move C,MC2.0 Carry = 0

jump NC,<...> Jump (hit)

move AP,#01 0D0D *0001 17 0D0D 0D0D 0000 0000 1122

sr 0D0D *0000 Carry = 1

sjump NC,<...> No Jump to next iteration

ret Return with A[0]= sqrt(A[3:2])
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